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Analytical approach to viscous fingering in a cylindrical Hele-Shaw cell
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We report analytical results for the development of the viscous fingering instability in a cylindrical Hele-
Shaw cell of radiusa and thicknessb. We derive a generalized version of Darcy’s law in such cylindrical
background, and find it recovers the usual Darcy’s law for flow in flat, rectangular cells, with corrections of
higher order inb/a. We focus our interest on the influence of the cell’s radius of curvature on the instability
characteristics. Linear and slightly nonlinear flow regimes are studied through a mode-coupling analysis. Our
analytical results reveal that linear growth rates and finger competition are inhibited for an increasingly larger
radius of curvature. The absence of tip-splitting events in cylindrical cells is also discussed.

DOI: 10.1103/PhysRevE.65.026303 PACS number~s!: 47.20.Ma, 47.60.1i, 47.20.Ky, 47.54.1r
ro
-

of
id
n
t-
an

n
he
w
s
e
ry
o
d

ga
o

n
o

is

he
e

w

ll
fy
re

cy

to
nd
at

ere
rties
In

ics
dic
de-
e

the
han
th
ith

tal

ll
n
es
ted

ls
os-
al-
y-
or,
and
s of
in

se-
er-
m-
nd
al
al
al
I. INTRODUCTION

When a fluid is pushed by a less viscous one in a nar
space between two parallel plates~a device known as Hele
Shaw cell!, the Saffman-Taylor instability arises@1#. This
hydrodynamic instability results in the complex evolution
the moving interface between the fluids, producing a w
range of patterns@2#. Since the pioneering work of Saffma
and Taylor@1#, these visually striking, viscous fingering pa
terns have been extensively studied, both theoretically
experimentally@2#.

One noteworthy distinction between experimental a
theoretical work on the Saffman-Taylor problem is that t
measurements usually reveal disturbances associated
friction at the sidewalls of the Hele-Shaw cell, while mo
theoretical studies sidestep this problem by assuming p
odic boundary conditions. In principle, rigid-wall bounda
conditions would be closer to an experimental realization
the problem. However, the use of periodic boundary con
tions, as opposed to rigid-wall ones in theoretical investi
tions of the Saffman-Taylor problem has been a matter
interest and debate during the last few decades@2–6#.

In the early 1990’s, an attempt to measure the flow i
cell that approximates the periodic boundary conditions
the theory has been performed by Zhao and Maher@5#. Their
interesting experimental work considered gravity-driven v
cous flow within acylindrical Hele-Shaw cell~two coaxial
cylinders separated by a small gap! of large radius of curva-
ture. To drive the system gravitationally, they allowed t
fluids to form a stable flat interface, and then invert the c
to put the denser fluid on the top. The fluids used in@5# had
almost the same viscosity~low-viscosity contrast!, such that
the process of finger competition leads to a nearly up-do
symmetric interface. The main goal in Ref.@5# was to di-
rectly compare viscous fingering flow in a cylindrical ce
with flow in a conventional, flat, rectangular cell, and veri
if the rigid sidewalls could be viewed as having been
placed with periodic boundary conditions.

Comparison of the pattern evolution observed in the
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lindrical cell experiment@5# with similar measurements in
rectangular cells with sidewalls@7,8#, shows that periodic
boundary conditions yieldfew differencesof results. More-
over, the cylindrical cell patterns also look very similar
computer simulation results obtained by Tryggvason a
Aref @4#, who used periodic boundary conditions in a fl
rectangular cell.

The experimental results presented in@5# suggest that, for
a large radius of curvature and low-viscosity contrast, th
are no significant changes made in the statistical prope
of the Saffman-Taylor flow by friction at the boundaries.
other words, it seems that the boundaries affect the dynam
in much the same way whether they are provided by perio
boundary conditions or by the presence of physical si
walls. Although the majority of flow features survive th
elimination of sidewall friction, the authors in Ref.@5# were
not able to perform a meaningful test of growth rates in
linear regime due to experimental disturbances other t
rigid-wall ones, related to the inversion of the cell. It is wor
noting that sidewall effects are more prominent in cases w
higher-viscosity contrast@9–11#.

Despite the relevance and simplicity of the experimen
work carried out in Ref.@5#, a theoretical analysis of the
viscous fingering instability in a cylindrical Hele-Shaw ce
is lacking in the literature. A theoretical study of flow i
cylindrical cells, could yield insight into the possible caus
that may contribute to the few differences of results detec
in @5#. In this paper, we examine flow in cylindrical cel
analytically. We consider the general case of arbitrary visc
ity contrast and cell radius. In Sec. II, we derive a gener
ized version of Darcy’s law suitable to describe flow in c
lindrical cells. This version introduces a correction fact
which depends on the ratio between the cell’s thickness
radius. This result enables us to express the difference
behavior between flow in rectangular and cylindrical cells
quantitative terms. In Sec. III, we investigate the con
quences of such differences in the flow dynamics by p
forming a mode-coupling analysis of the problem. We exa
ine both linear and slightly nonlinear stages of evolution, a
explicity show how linear growth rates and the dynamic
process of finger competition are influenced by cylindric
geometry. The absence of finger tip splitting in cylindric
©2002 The American Physical Society03-1
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cells is briefly discussed. Section IV presents our final
marks.

II. DARCY’S LAW IN CYLINDRICAL ENCLOSURES

In this section, we present the physical system of inte
and derive a generalized Darcy’s law that is suited to bri
ing out the geometrical aspects related to viscous fluid fl
in cylindrical passages. Consider two immiscible, inco
pressible, viscous fluids, flowing in a narrow gap of thic
nessb, between two long coaxial, thin right circular cylin
ders~cylindrical Hele-Shaw cell!. The radius of curvature o
the cylindrical cell isa ~see Fig. 1!. Denote the densities an
viscosities of the lower and upper fluids, respectively,
r1 ,h1 andr2 ,h2. The flows in fluids 1 and 2 are assumed
be irrotational, and between them there exists a surface
sion s. The acceleration of gravity is represented byg, and
points downward along the direction of the cylinders’ co
mon axis.

In order to derive a generalized version of Darcy’s la
adjusted to describe flow in such confined cylindrical en
ronment, it suffices to focus on a single fluid. The start
point of our calculation is a coordinate-free representation
the continuity equation for an incompressible fluid

“•u50, ~1!

and the Navier-Stokes equation

rF]u

]t
1~u•“ !uG52“p1h“2u1rg, ~2!

whereu denotes the three-dimensional fluid velocity andp is
the hydrodynamic pressure.

We consider cylindrical coordinates (r ,w,z), where thez
axis coincides with that of the two cylinders. Specializing
the case of flow in thez direction uz(r ,z)5uz(r ,z) ẑ, the

FIG. 1. Schematic configuration of viscous flow in a cylindric
Hele-Shaw cell. The dashed curve represents the unperturbed
face z50, and the solid undulated curve depicts the perturbed
terfacez5z(w,t). All other relevant quantities are defined in th
text.
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continuity Eq.~1! leads to](r uz)/]z50. Consequently, the
velocity may be written is a function ofr only

uz5u~r ! ẑ, ~3!

whereẑ denotes the unit vector along thez axis.
Following the standard approach in Hele-Shaw problem

we restrict our attention to small-velocity flows of viscou
fluids, and neglect the inertial terms on the left-hand side
Eq. ~2!. Under such circumstances, we use the solution~3! to
rewrite the Navier-Stokes equation as

]p

]z
2rg5

h

r

]

]r F r
] u~r !

]r G . ~4!

Since the left-hand side is a function ofz, and the right-hand
side involves onlyr, Eq. ~4! may be satisfied only if each
side is equal to a constant of common valueB. Imposing the
no-slip boundary conditions at the solid cylindrical she
u(a)5u(a1b)50, we find the solution of the radial equa
tion

u~r !5
B

4h F r 22C logS r

aD2a2G , ~5!

whereC5@(a1b)22a2#/ log(11b/a). In contrast to flow in
usual flat, rectangular cells, observe that the velocity pro
Eq. ~5! is not rigorously parabolic~or, Poiseuille-like! due to
the presence of a logarithmic term. The profile is very clo
to a parabola forr /a!1, but deviates from parabolic shap
for larger values ofr /a.

Averaging the three-dimensional velocityu with
respect to the transverse, radial direction, definingv
[(1/b) *a

a1bu(r )dr, leads to the equation for the mea
flow velocity of the fluid

v52
b2 F~b/a!

12h F]p

]z
2rgG , ~6!

where

F~b/a!53S a

bD 3H b

a F12S 11
b

aD 2G
logS 11

b

aD 2
2

3 F12S 11
b

aD 3GJ .

~7!

Equation ~6! is Darcy’s law for flow in cylindrical Hele-
Shaw cells. The function F(b/a)'11(1/30)(b/a)2

1O„(b/a)3
… introduces a correction factor that measures

deviation from the flat, rectangular case (a→`). Equation
~6! recovers the usual Darcy’s law for flow in flat cells wit
corrections of higher order inb/a, introduced by 1
<F(b/a)<2.

Darcy’s law is the governing equation for Hele-Shaw-ty
flows @2#. Therefore, quantitative comparisons between
namical behavior of flow in rectangular and cylindrical ce
must take into account the corrections introduced by Eq.~6!,
in addition to those caused by sidewall effects and cell
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-
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version@5#. In contrast to the unavoidable disturbances m
tioned in Ref.@5#, which are hard to quantify accurately, E
~6! allows precise determination of intrinsic, purely ge
metrical effects.

Based on Eq.~7!, we may start understanding why th
differences of results detected in Ref.@5# were so small. In
Ref. @5#, the authors used a cylindrical cell of radius of cu
vature a518 mm and thicknessb51 mm, such thatb/a
'5.631022. From Eq.~7!, this means a small correction o
0.01% with respect to the flat cell case (a→`). In practical
terms, we estimate that a ratio of roughlyb/a'1023 would
be enough in order for curvature effects to be conside
negligible.

III. LINEAR AND SLIGHTLY NONLINEAR DYNAMICS

In this section, we investigate the consequences of
changes introduced by the generalized Darcy’s law~6! in
both linear and weakly nonlinear stages of the interface e
lution. We focus on two general questions:~i! On the linear
level, what is the effect of Eq.~6! on linear growth rates?~ii !
Concerning the onset of nonlinear effects, how are fin
competition, up-down interfacial symmetry, and finger
splitting influenced by Eq.~6!?

To study these issues, we derive a second-order m
coupling differential equation for the interface perturbati
amplitudes. We express the fluid-fluid interface as a Fou
series

z~w,t !5 (
n52`

1`

zn~ t !exp~ inw!, ~8!

wherezn(t) denotes the complex Fourier mode amplitud
andn50,61,62, . . . , is thediscrete azimuthal wave num
ber.

We exploit the irrotational flow condition to define th
velocity potentialvj52“f j in fluids j 51 and 2. Using the
velocity potential, we evaluate Darcy’s law~6! for each of
the fluids on the interface, subtract the resulting express
from each other, and divide by the sum of the two fluid
viscosities to get the equation of motion

AS f1uz1f2uz
2 D2S f1uz2f2uz

2 D5F~b/a!@Uz1k#uz .

~9!

Note the presence of the correction factor~7! on the right-
hand side of Eq.~9!. To obtain Eq.~9! we used the pressur
boundary conditionp22p15sk at the interfacez5z, where
k5(1/a2)(]2z/]w2)@11(]z/]w)2#23/2 is the interfacial
curvature. The viscosity contrast A5(h22h1)/(h21h1),
and U5b2g(r22r1)/@12(h11h2)# is a characteristic ve
locity. In Eq. ~9!, we introduced dimensionless variable
scaling all lengths by the gap-sizeb, and all velocities by
s/12(h11h2). From now on we work, unless otherwis
stated, with the dimensionless version of Eq.~9!.

Following steps similar to those performed in@12–14#,
we define Fourier expansions for the velocity potentials
02630
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f j5 (
nÞ0

f jn~ t !expF inw1~21! j 21
unu
a

zG , ~10!

which obey Laplace’s equation and vanish asz→6`. We
expressf j in terms of the perturbation amplitudeszn by
considering the kinematic boundary condition for flow in
cylindrical cell. As in the flat cell case, the kinematic cond
tion n•v1uz5z5n•v2uz5z refers to the continuity of the nor
mal velocity across the fluid-fluid interface. Substitutin
these relations into Eq.~9!, and Fourier transforming, yield
the mode-coupling equation of the Saffman-Taylor probl
in a cylindrical Hele-Shaw cell

żk5l~k!zk1 (
k8Þ0

G~k,k8!żk8zk2k81O~zk
3!, ~11!

conveniently written in terms of the characteristic wav
numberk5n/a. The overdot denotes total time derivativ
and

l~k!5F~b/a!uku@U2k2# ~12!

is the dimensionless linear growth rate. The function

G~k,k8!5Auku@12sgn~kk8!# ~13!

is the second-order mode-coupling term, where the sgn fu
tion equals61 according to the sign of its argument.

Based on mode-coupling Eq.~11!, we now discuss some
noteworthy features of both linear and weakly nonlinear
gimes. Start with the linear growth rate~12!: it is written as
the product of the correction factorF(b/a) by l(k) rect
5uku@U2k2#, which incidentally, is the linear growth rat
for the flat, rectangular case@12#. This last observation indi-
cates that, for fixed gap-thicknessb, there is a slight decreas
of linear growth for increasingly larger radius of curvaturea.
The linear solution to Eq.~11! is purely exponentialzk

lin(t)
5zk(0)exp@l(k)t#, and introduces the correction facto
F(b/a) into the linear, rectangular solution@12#. At the lin-
ear level, this correction becomes more and more impor
as time progresses and whenb/a→1.

From Eq.~12!, we may extract two relevant parameter
~i! the critical wave-numberkc51/AU @defined by setting
l(k)50#, beyond which all modes are linearly stable; a
~ii ! the fastest growing modek* 5kc /A3, which maximizes
l(k), and dominates the initial dynamics of the interfac
Note thatkc and k* show no dependence on the radius
curvaturea. This behavior is illustrated in Fig. 2, which de
picts the linear growth rate~12! as a function ofk, in the flat
cell limit ~dashed curve! and for a cylindrical cell witha
'b ~solid curve!. Note that for both cases, the peak locati
and width of the band of unstable modes remain unchang
independently of the value ofa. Differences in behavior be
tween flow in cylindrical and flat cells are more pronounc
aroundk* . These facts may be interpreted as follows: sin
k5n/a, if one increases the cell’s radius of curvaturea, the
number of fingersn at the two-fluid interface is also in
creased in order to keep the fastest-growingk constant.
3-3
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Now we turn our attention to the weakly nonlinear flo
stage. We begin by discussing finger-competition dynam
It is well known that the viscosity contrastA has a crucial
role in determining interfacial behavior for flow in flat rec
angular cells @4,5,7,8,12#. For low-viscosity contrast (A
'0), the interface is nearly up-down symmetric, and
creasingly larger asymmetry is observed for larger value
A(A'61). Consequently,A has great influence on the dy
namics of finger competition and pattern selection. In cyl
drical cells, in addition to the parameterA, it is of interest to
examine how finger-competition dynamics is affected by
dius of curvaturea ~or correspondingly, by the correctio
factor F(b/a)).

In order to investigate finger competition, we consider
influence of a fundamental mode, on the growth of its s
harmonic. To do that we rewrite the net perturbation~8! in
terms of cosine and sine modes, where the cosineak5zk
1z2k and sinebk5 i (zk2z2k) amplitudes are real valued
Then, for consistent second-order expressions, we rep
the time-derivative termsȧk andḃk on the right-hand side o
Eq. ~11! by l(k)ak andl(k)bk , respectively. We consider
dominant fundamental of wave-numberkf5k* , and a sub-
harmonic of wave-numberks5kf /2 and relatively weaker
amplitude. Without loss of generality, we may takeakf

.0

and bkf
50. Under these circumstances, we obtain the

lowing equations of motion for sine and cosine subharmo

ȧks
5l~ks!@11Aksakf

#aks
, ~14!

ḃks
5l~ks!@12Aksakf

#bks
. ~15!

Note that if A.0 andakf
.0, the fundamental accelerate

the growth of the subharmonic cosine and inhibits the s
harmonic sine mode. This causes increased variability am
the lengths of fingers of less viscous fluid 1 penetrating m
viscous fluid 2. This effect describes finger competition.
they were in flat cells, interface asymmetry and finger co
petition are enhanced to a degree proportional toA.

FIG. 2. Variation of the dimensionless growth rate~12! as a
function ofk, for U51: in the flat cell limitb/a→0 ~dashed curve!,
and in the cylindrical caseb/a→1 ~solid curve!. Note that for both
situations,kc51 andk* 51/A3.
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Although the second-order termG(k,k8) @see Eq.~13!#
has no explicit dependence ona, the coupling between
modeskf and ks makes the interface dynamics sensitive
the background cylindrical geometry. From Eqs.~14! and
~15!, we see that for a givenA, the degree of competition an
up-down asymmetry depend on the overall multiplicati
term l(ks), which in turn is proportional to the correctio
factorF(b/a). To illustrate the combined influence ofA and
a on finger competition, we plot in Fig. 3 the effectiv
growth ratele f f5l(ks)@11Aksakf

#, taken from Eq.~14!, as

a function of viscosity contrastA. In Fig. 3, the dashed line
corresponds to the flat cell limit, while the solid line e
presses behavior for a cylindrical cell witha'b. We see
from Fig. 3 that the discrepancies between flow in cylindric
and flat cells are more noticeable for increasingly larger v
ues of both A and b/a. Therefore, with respect to finge
competition, the flow will be more stable with the increase
the cylindrical cell radiusa. Geometrically speaking, we ca
say that the mean curvatureH5(1/2a) of the cylindrical cell
intensifies the competition among fingers in comparison w
that of rectangular, planar flow.

We conclude this section by briefly discussing the pos
bility of occurrence of finger tip splitting in cylindrical cells
Tip splitting is related to the influence of a fundamen
mode kf on the growth of its harmonickh52kf @12#. By
rewriting Eq. ~11! in terms of sine and cosine modes, a
considering the coupling betweenkf andkh , we verify that
the harmonic mode cannot be influenced by the fundamen
Therefore, at second order, there is no tendency for the
gers to split in cylindrical cells. Tip splitting is absent for an
value of the cell’s radius of curvaturea, including the flat
cell limit a→`. This fact may be interpreted in geometr
terms as follows: unlike finger-competition behavior, whi
depends on, and varies with the cylinder’smeancurvatureH,
finger tip splitting is controlled byGaussiancurvature@14#,
which is zero for a cylinder. In this sence, the absence of
splitting in cylindrical cells was expected.

FIG. 3. Variation of the effective growth ratele f f5l(ks)@1
1Aksakf

#, from Eq. ~14!, as a function ofA, for U51 and akf

51: in the flat cell limitb/a→0 ~dashed line!, and in the cylindri-
cal caseb/a→1 ~solid line!. For a given value of viscosity contras
A, finger competition increases for larger values ofb/a.
3-4
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IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we investigated viscous flow in cylindric
Hele-Shaw cells analytically. The study of flow in such g
ometry requires modification of Darcy’s law equation. A ge
eralized version of Darcy’s law was derived from first pri
ciples. It introduces pertinent corrections to the usual vers
of Darcy’s law in flat, rectangular geometry. We used
mode-coupling approach to examine the fluid-fluid interfa
evolution. Arbitrary viscosity contrastA and cell radiusa
have been considered. We deduced the following genera
sults: On the linear level, there is an inhibition of growth f
increasingly larger radius of curvaturea; and, for sligthly
nonlinear stages, we found that finger competition and in
face asymmetry are enhanced for flow in cylindrical cells.
addition, we explained the absence of tip-splitting events
cylindrical cells.

The study of geometry-related correctionsF(b/a) for the
case b/a.1 could be interesting to study in the futur
. A

.P
d
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Within this limit, and following the lines of recent work by
Ruyer-Quil @15# and by Meigninet al. @16#, it would be of
interest to study inertial corrections to the generalized D
cy’s law ~6!, and examine gap-size effects for the Saffma
Taylor instability in cylindrical cells. Experimental study i
this direction could use, and take advantage of already ex
ing, very good cylindrical Taylor-Couette cells. In addition,
thorough investigation of fully nonlinear flow stages in c
lindrical cells, through extensive computer simulations, m
reveal additional corrections and dynamic behavior. Such
merical studies could provide a more meaningful confron
tion between experiment and theory in cylindrical cells.
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