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Analytical approach to viscous fingering in a cylindrical Hele-Shaw cell
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We report analytical results for the development of the viscous fingering instability in a cylindrical Hele-
Shaw cell of radiusa and thickness. We derive a generalized version of Darcy’s law in such cylindrical
background, and find it recovers the usual Darcy’s law for flow in flat, rectangular cells, with corrections of
higher order inb/a. We focus our interest on the influence of the cell's radius of curvature on the instability
characteristics. Linear and slightly nonlinear flow regimes are studied through a mode-coupling analysis. Our
analytical results reveal that linear growth rates and finger competition are inhibited for an increasingly larger
radius of curvature. The absence of tip-splitting events in cylindrical cells is also discussed.
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I. INTRODUCTION lindrical cell experimen{5] with similar measurements in
rectangular cells with sidewallg7,8], shows that periodic
When a fluid is pushed by a less viscous one in a narrovboundary conditions yieldew difference®f results. More-
space between two parallel platesdevice known as Hele- over, the cylindrical cell patterns also look very similar to
Shaw cel), the Saffman-Taylor instability arisgd]. This  computer simulation results obtained by Tryggvason and
hydrodynamic instability results in the complex evolution of Aref [4], who used periodic boundary conditions in a flat
the moving interface between the fluids, producing a wideectangular cell.
range of patternf2]. Since the pioneering work of Saffman  The experimental results presented5ih suggest that, for
and Taylor[1], these visually striking, viscous fingering pat- a large radius of curvature and low-viscosity contrast, there
terns have been extensively studied, both theoretically andre no significant changes made in the statistical properties
experimentally{ 2]. of the Saffman-Taylor flow by friction at the boundaries. In
One noteworthy distinction between experimental andother words, it seems that the boundaries affect the dynamics
theoretical work on the Saffman-Taylor problem is that thein much the same way whether they are provided by periodic
measurements usually reveal disturbances associated wiloundary conditions or by the presence of physical side-
friction at the sidewalls of the Hele-Shaw cell, while mostwalls. Although the majority of flow features survive the
theoretical studies sidestep this problem by assuming perelimination of sidewall friction, the authors in R¢b] were
odic boundary conditions. In principle, rigid-wall boundary not able to perform a meaningful test of growth rates in the
conditions would be closer to an experimental realization ofinear regime due to experimental disturbances other than
the problem. However, the use of periodic boundary condirigid-wall ones, related to the inversion of the cell. It is worth
tions, as opposed to rigid-wall ones in theoretical investiganoting that sidewall effects are more prominent in cases with
tions of the Saffman-Taylor problem has been a matter ohigher-viscosity contrag9—11].
interest and debate during the last few decd@es|. Despite the relevance and simplicity of the experimental
In the early 1990’s, an attempt to measure the flow in avork carried out in Ref[5], a theoretical analysis of the
cell that approximates the periodic boundary conditions oliscous fingering instability in a cylindrical Hele-Shaw cell
the theory has been performed by Zhao and M§berTheir  is lacking in the literature. A theoretical study of flow in
interesting experimental work considered gravity-driven vis-cylindrical cells, could yield insight into the possible causes
cous flow within acylindrical Hele-Shaw celtwo coaxial  that may contribute to the few differences of results detected
cylinders separated by a small gay large radius of curva- in [5]. In this paper, we examine flow in cylindrical cells
ture. To drive the system gravitationally, they allowed theanalytically. We consider the general case of arbitrary viscos-
fluids to form a stable flat interface, and then invert the cellity contrast and cell radius. In Sec. Il, we derive a general-
to put the denser fluid on the top. The fluids use@iShhad ized version of Darcy’s law suitable to describe flow in cy-
almost the same viscositjow-viscosity contragf such that lindrical cells. This version introduces a correction factor,
the process of finger competition leads to a nearly up-downvhich depends on the ratio between the cell’s thickness and
symmetric interface. The main goal in R¢g] was to di- radius. This result enables us to express the differences of
rectly compare viscous fingering flow in a cylindrical cell behavior between flow in rectangular and cylindrical cells in
with flow in a conventional, flat, rectangular cell, and verify quantitative terms. In Sec. Ill, we investigate the conse-
if the rigid sidewalls could be viewed as having been re-quences of such differences in the flow dynamics by per-
placed with periodic boundary conditions. forming a mode-coupling analysis of the problem. We exam-
Comparison of the pattern evolution observed in the cy4ine both linear and slightly nonlinear stages of evolution, and
explicity show how linear growth rates and the dynamical
process of finger competition are influenced by cylindrical
*E-mail address: jme@lIftc.ufpe.br geometry. The absence of finger tip splitting in cylindrical

1063-651X/2002/6&)/0263035)/$20.00 65 026303-1 ©2002 The American Physical Society



JOSEA. MIRANDA PHYSICAL REVIEW E 65 026303

Z continuity Eq.(1) leads tod(r u,)/dz=0. Consequently, the
A g velocity may be written is a function af only

éﬁ u,=u(r) z 3

wherez denotes the unit vector along thexis.

Following the standard approach in Hele-Shaw problems,
we restrict our attention to small-velocity flows of viscous
fluids, and neglect the inertial terms on the left-hand side of
Eqg. (2). Under such circumstances, we use the soluti®ro
rewrite the Navier-Stokes equation as

_b‘> nl pl Ip 7 J

d u(r)
ar

4

Since the left-hand side is a function nfand the right-hand
FIG. 1. Schematic configuration of viscous flow in a cylindrical s!ge .|nvolve|s onlyr, Eg. (4) :cnay be Satlzgf"d only' if eﬁCh
Hele-Shaw cell. The dashed curve represents the unperturbed intefJ€ IS equa toa const_a_nt of common vs dmposlng the
facez=0, and the solid undulated curve depicts the perturbed inno-slip boundary condlltlons at the.SOHd cyllndrlpal shells
terfacez={(¢,t). All other relevant quantities are defined in the U(@)=u(a+b)=0, we find the solution of the radial equa-
text. tion

, ®)

cells is briefly discussed. Section IV presents our final re- u(r)= E{rZ—CIog
marks. 4n

r
a
whereC=[(a+b)?—a?]/log(1+b/a). In contrast to flow in
usual flat, rectangular cells, observe that the velocity profile
In this section, we present the physical system of interesEd- (5) is not rigorously paraboli¢or, Poiseuille-like due to
and derive a generalized Darcy’s law that is suited to bringthe presence of a logarithmic term. The profile is very close
ing out the geometrical aspects related to viscous fluid flowio @ parabola for/a<1, but deviates from parabolic shape
in cylindrical passages. Consider two immiscible, incom-for larger values of/a.
pressible, viscous fluids, flowing in a narrow gap of thick- Averaging the three-dimensional velocityy with
nessh, between two long coaxial, thin right circular cylin- respect to the transverse, radial direction, defining
ders(cylindrical Hele-Shaw cell The radius of curvature of =(1/b) f3"u(r)dr, leads to the equation for the mean
the cylindrical cell isa (see Fig. 1 Denote the densities and flow velocity of the fluid
viscosities of the lower and upper fluids, respectively, as

II. DARCY’S LAW IN CYLINDRICAL ENCLOSURES

p1,m1 andp,, 7,. The flows in fluids 1 and 2 are assumed to __ b? F(bla) 07_p_ 6)
be irrotational, and between them there exists a surface ten- v 129 Jz Pa|
sion o. The acceleration of gravity is representeddyyand
points downward along the direction of the cylinders’ com-where
mon axis. 5
In order to derive a generalized version of Darcy’s law, E 1— 1+9
adjusted to describe flow in such confined cylindrical envi- a\®| a a 2 b\?3
ronment, it suffices to focus on a single fluid. The starting F(b/a)=3(5) [ b\ 3 1_(1+ g)
point of our calculation is a coordinate-free representation of log| 1+ 5)
the continuity equation for an incompressible fluid @
V-u=0, oy Equation (6) is Darcy’s law for flow in cylindrical Hele-

Shaw cells. The function F(b/a)~1+ (1/30)(b/a)?
+0((b/a)®) introduces a correction factor that measures the
deviation from the flat, rectangular casa—{). Equation

and the Navier-Stokes equation

P 0—u+(u-V)u — —Vp+ 5V2u+pg, (2)  (6) recovers the usual Darcy’s law for flow in flat cells with
ot corrections of higher order inb/a, introduced by 1
<F(b/a)=<2.
whereu denotes the three-dimensional fluid Velocity md Darcy’s law is the governing equation for He'e_shaw_type
the hydrodynamic pressure. flows [2]. Therefore, quantitative comparisons between dy-

We consider cylindrical coordinates, (p,z), where thez  namical behavior of flow in rectangular and cylindrical cells
axis coincides with that of the two cylinders. Specializing tomust take into account the corrections introduced by(Ey.
the case of flow in thez direction u,(r,z)=u,(r,z)z, the in addition to those caused by sidewall effects and cell in-
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version[5]. In contrast to the unavoidable disturbances men- ~In|

tioned in Ref[5], which are hard to quantify accurately, Eq. b= ¢jn(t)exr{in€0+(_ 1)1_132 , (10
(6) allows precise determination of intrinsic, purely geo- n=0

metrical effects.

Based on Eq(7), we may start understanding why the
differences of results detected in RE5] were so small. In
Ref.[5], the authors used a cylindrical cell of radius of cur-
vaturea=18 mm and thicknesb=1 mm, such thab/a
~5.6x 10 2. From Eq.(7), this means a small correction of
0.01% with respect to the flat cell case{ ). In practical
terms, we estimate that a ratio of rougtilfa~ 102 would
be enough in order for curvature effects to be considere
negligible.

which obey Laplace’s equation and vanishzas +«. We
express¢; in terms of the perturbation amplitudes by
considering the kinematic boundary condition for flow in a
cylindrical cell. As in the flat cell case, the kinematic condi-
tion n-vy|,_,=n-v,|,_, refers to the continuity of the nor-
mal velocity across the fluid-fluid interface. Substituting
these relations into Eq9), and Fourier transforming, yields
H1e mode-coupling equation of the Saffman-Taylor problem
in a cylindrical Hele-Shaw cell

IIl. LINEAR AND SLIGHTLY NONLINEAR DYNAMICS §k=>\(k)§k+k§0 G(KK) k- +O(LR),  (11)
In this section, we investigate the consequences of the
changes introduced by the generalized Darcy’s [&vin conveniently written in terms of the characteristic wave-
both linear and weakly nonlinear stages of the interface evolumberk=n/a. The overdot denotes total time derivative,
lution. We focus on two general questioris: On the linear ~and
level, what is the effect of Ed6) on linear growth rates(i)
Concerning the onset of nonlinear effects, how are finger \(k)=F(b/a)|k|[U—k?] (12
competition, up-down interfacial symmetry, and finger tip
splitting influenced by Eq(6)? is the dimensionless linear growth rate. The function
To study these issues, we derive a second-order mode-
coupling differential equation for the interface perturbation G(k,k")=A[K|[1—sgr(kk')] (13
amplitudes. We express the fluid-fluid interface as a Fourier
series is the second-order mode-coupling term, where the sgn func-
tion equals=1 according to the sign of its argument.
+oo Based on mode-coupling E¢L1), we now discuss some
o= 2, y(bexping), (8)  noteworthy features of both linear and weakly nonlinear re-
n=-e gimes. Start with the linear growth rat&2): it is written as
the product of the correction factdf(b/a) by A(K) ect
where {,,(t) denotes the complex Fourier mode amplitudes= |k|[U—k?], which incidentally, is the linear growth rate
andn=0,=1,%*2, ..., is thediscrete azimuthal wave num- for the flat, rectangular cagé?2]. This last observation indi-
ber. cates that, for fixed gap-thicknelssthere is a slight decrease
We exploit the irrotational flow condition to define the of linear growth for increasingly larger radius of curvatare
velocity potentialv;= —V ¢, in fluids j=1 and 2. Using the  The linear solution to Eq(11) is purely exponential}" (t)
VElOCit_y pOtentialz we evaluate Darcy’S Ia@) fOI’ each of ) :gk(o)exn:)\(k)t], and introduces the correction factor
the fluids on the interface, subtract the resulting expressions p/a) into the linear, rectangular solutig.2]. At the lin-
from each other, and divide by the sum of the two fluids’eay |evel, this correction becomes more and more important
viscosities to get the equation of motion as time progresses and whefa— 1.
From Eq.(12), we may extract two relevant parameters:
A( ¢+ ¢z|g) _( b1l = #al ¢ (i) the critical wave-numbek.=1/\/U [defined by setting
2 2 N(k)=0], beyond which all modes are linearly stable; and
(9 (i) the fastest growing mode* =k./+/3, which maximizes
N(k), and dominates the initial dynamics of the interface.
Note the presence of the correction fac(@y on the right- Note thatk. and k* show no dependence on the radius of
hand side of Eq(9). To obtain Eq.(9) we used the pressure curvaturea. This behavior is illustrated in Fig. 2, which de-
boundary conditiom,— p;= o« at the interface= ¢, where  picts the linear growth rat€l2) as a function ok, in the flat
k= (1/a%)(6°¢1 99?1+ (9Ll 99)?] %2 is the interfacial cell limit (dashed curveand for a cylindrical cell witha
curvature. The viscosity contrast=Xn,— n1)/(n2+ 741), ~b (solid curve. Note that for both cases, the peak location
and U=b?g(p,—p1)/[12(n,+ 7,)] is a characteristic ve- and width of the band of unstable modes remain unchanged,
locity. In Eqg. (9), we introduced dimensionless variables, independently of the value @ Differences in behavior be-
scaling all lengths by the gap-sizg and all velocities by tween flow in cylindrical and flat cells are more pronounced
o/12(n,+ 7,). From now on we work, unless otherwise aroundk*. These facts may be interpreted as follows: since
stated, with the dimensionless version of [E9). k=nl/a, if one increases the cell's radius of curvatarethe
Following steps similar to those performed [ih2—14,  number of fingersn at the two-fluid interface is also in-
we define Fourier expansions for the velocity potentials  creased in order to keep the fastest-growkngpnstant.

>=F(b/a)[Uz+K]|{.
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FIG. 2. Variation of the dimensionless growth rat2) as a FIG. 3. Variation of the effective growth ratee;=X(ks)[1

function ofk, for U=1: in the flat cell limitb/a— 0 (dashed curje ~ +Aksa ], from Eq. (14), as a function ofA, for U=1 anday,
and in the cylindrical cask/a— 1 (solid curve. Note that for both = 1: in the flat cell limitb/a—0 (dashed ling and in the cylindri-
situations k=1 andk* = 1/\/§_ cal caseb/a— 1 (solid ling). For a given value of viscosity contrast

A, finger competition increases for larger valuesté.
Now we turn our attention to the weakly nonlinear flow
stage. We begin by discussing finger-competition dynamics. Although the second-order ter@(k,k’) [see Eq.(13)]
It is well known that the viscosity contragt has a crucial has no explicit dependence am the coupling between
role in determining interfacial behavior for flow in flat rect- odesk, andk, makes the interface dynamics sensitive to

angular cells[4,5,7,8,12. For low-viscosity contrastA  the packground cylindrical geometry. From Eq&4) and
~0), the interface is nearly up-down symmetric, and |n-g‘

i i 15), we see that for a givef, the degree of competition and
creasingly larger asymmetry is observed for larger values %fip-down asymmetry depend on the overall multiplicative
A(A=~*1). ConsequentlyA has great influence on the dy-

namics of finger competition and pattern selection. In cylin term A(ks), which in turn is proportional to the correction
: nger comp P L S y factor F(b/a). To illustrate the combined influence Afand
drical cells, in addition to the paramet@yit is of interest to

examine how finger-competition dynamics is affected by ra On finger competition, we plot in Fig. 3 the effective

dius of curvaturea (or correspondingly, by the correction 9"OWtN rateher=A(ks)[1+Aksay ], taken from Eq(14), as
factor F(b/a)). a function of viscosity contrasA. In Fig. 3, the dashed line
In order to investigate finger competition, we consider thecorresponds to the flat cell limit, while the solid line ex-
influence of a fundamental mode, on the growth of its subfpresses behavior for a cylindrical cell wit~b. We see
harmonic. To do that we rewrite the net perturbati8nhin  from Fig. 3 that the discrepancies between flow in cylindrical
terms of cosine and sine modes, where the cagire/,  and flat cells are more noticeable for increasingly larger val-
+{_y and sind=i({x— {-x) amplitudes are real valued. ues of both A and b/a. Therefore, with respect to finger
Then, for consistent second-order expressions, we replaemmpetition, the flow will be more stable with the increase of
the time-derivative terma, andb, on the right-hand side of the cylindrical cell radius. Geometrically speaking, we can
Eq. (11) by M (K)a, andX (k)b , respectively. We consider a say that the mean curvature=(1/2a) of the cylindrical cell
dominant fundamental of wave-numbler=k*, and a sub- intensifies the competition among fingers in comparison with
harmonic of wave-numbek,=k;/2 and relatively weaker that of rectangular, planar flow.
amplitude. Without loss of generality, we may ta.k@f>0 We conclude this section by briefly discussing the possi-

and b, =0. Under these circumstances, we obtain the fo|_bility of.o.ccur_rence of finger tip ;plitting in cylindrical cells.

Iowingfequations of motion for sine and cosine subharmonicTIp splitting is related to t_he |nfluen(_:e of a fundamental
modek; on the growth of its harmoni&,=2k; [12]. By

rewriting Eqg. (11) in terms of sine and cosine modes, and

considering the coupling betwedn andk,,, we verify that

i the harmonic mode cannot be influenced by the fundamental.

by =N (ke)[1—Aksay by . (15  Therefore, at second order, there is no tendency for the fin-

gers to split in cylindrical cells. Tip splitting is absent for any

Note that if A>0 anday >0, the fundamental accelerates yajue of the cell's radius of curvatur including the flat

the growth of the subharmonic cosine and inhibits the subeell limit a—«. This fact may be interpreted in geometric

harmonic sine mode. This causes increased variability amongrms as follows: unlike finger-competition behavior, which

the lengths of fingers of less viscous fluid 1 penetrating mor@epends on, and varies with the cylindarieancurvatureH,

viscous fluid 2. This effect describes finger competition. Asfinger tip splitting is controlled byzaussiancurvature[14],

they were in flat cells, interface asymmetry and finger comwhich is zero for a cylinder. In this sence, the absence of tip

petition are enhanced to a degree proportionah.to splitting in cylindrical cells was expected.

é‘ks: M(k9)[1+Aksag Jay, (14
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IV. CONCLUSIONS AND PERSPECTIVES Within this limit, and following the lines of recent work by
Ruyer-Quil[15] and by Meigninet al. [16], it would be of
interest to study inertial corrections to the generalized Dar-
cy’'s law (6), and examine gap-size effects for the Saffman-

In this paper, we investigated viscous flow in cylindrical
Hele-Shaw cells analytically. The study of flow in such ge-
ggﬁgg dr?/%l:giii rg?ggffttgr;a?:, [\/)ve;rg)iiselﬁlvgo??rl:)?rtﬁir:.sf gr?:_'Taonr instability in cylindrical cells. Experimental study in

Y PMN" 1his direction could use, and take advantage of already exist-

ciples. It !ntroduqes pertinent corrections to the usual ver5|ori1ng’ very good cylindrical Taylor-Couette cells. In addition, a
of Darcy’s law in flat, rectangular geometry. We used a

mode-coupling approach to examine the fluid-fluid interfac thorough investigation of fully nonlinear flow stages in cy-
coupling appro: ) . Sindrical cells, through extensive computer simulations, may
evolution. Arbitrary viscosity contrash and cell radiusa

have been considered. We deduced the followina aeneral rr_eveal additional corrections and dynamic behavior. Such nu-
i . : . S 99 Sherical studies could provide a more meaningful confronta-
sults: On the linear level, there is an inhibition of growth for

; . ; ) tion between experiment and theory in cylindrical cells.
increasingly larger radius of curvatuge and, for sligthly
nonlinear stages, we found that finger competition and inter-

face asymmetry are enhanced for flow in cylindrical cells. In ACKNOWLEDGMENTS
addition, we explained the absence of tip-splitting events in
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